Archive for July, 2017

Rust: Not So Great for Codec Implementing

Monday, July 31st, 2017

Disclaimer: obviously it’s my opinion, feel free to prove me wrong or just ignore.

Now I should qualify for zoidberg (slang name for lowly programmer in Rust who lives somewhere in a dumpster and who is also completely ignored—perfect definition for me) I want to express my thoughts about programming experience with Rust. After all, NihAV was restarted to find out how modern languages fare for my favourite task and there was about one language that was promising enough. So here’s a short rant about the aspects of this programming language that I found good and not so good.

Good things

  • Modern language features: standard library containers, generics, units and their visibility etc etc. And at least looks like Rust won’t degrade into metaprogramming language any time soon (that’s left for upcoming Rust+=1 programming language);
  • Reasonable encapsulation: I mean both (sub)modules organisation and the fact that functions can be implemented just for some structure;
  • Powerful enums that can act both as plain C set of values and also as tagged objects, e.g. the standard Result enum has two values—Ok(result) and Err(error) where both result and error are two different user-defined types, so returned value can contain either while being the same type (Result);
  • More helpful error messages (e.g. it tries to suggest a correction for mistyped variable name or explains an error a bit more detailed). Sure, Real Programmers™ don’t need that but it’s still nice;
  • No need for dependency resolving: you can have stuff in one module referencing stuff in another module and vice versa at the same time, same for no need
  • Traits (standard interfaces for objects) and the fact that operations are implemented as specific traits (i.e. if you need to have a + b with your custom object you can implement std::ops::Add for it and it will work). Also it’s nice to extend functionality of some object by making an implementation for some trait: e.g. my bitstream reader is defined in one place but in another module I made another trait for it for reading codebooks so I can invoke let val = bitread.read_codebook(&cb)?; later.

Unfortunately, it’s not all rosy and peachy, Rust has some things that irritate me. Some of them are following from the advantages (i.e. you pay for many features with compilation time) and other are coming from language design or implementation complexity.

Irritating things that can probably be fixed

  • Compilation time is too large IMO. While the similar code in Libav is recompiled in less than a second, NihAV (test configuration) is built in about ten seconds. And any time above five seconds is irritating to wait. I understand why it is so and I hope it will be improved in the future but for now it’s irritating;
  • And, on the similar note, benchmarks. While overall built-in testing capabilities in Rust are good (file it under good things too), the fact that benchmarking is available only for limbo nightly Rust is annoying;
  • No control over allocation. On one hoof I like that I can not worry about it, on the other hoof I’d like to have an ability to handle it.
  • Poor primitive types functionality. If you claim that Rust is systems programming language then you should care more about primitive types than just relying on as keyword. If you care about systems programming and safety you’d have at least one or two functions to convert type into a smaller one (e.g. i16/u16 -> u8) and/or check whether the result fits. That’s one of the main annoyances when writing codecs: you often have to convert result into byte with range clipping;
  • Macros system is lacking. It’s great for code but if you want to use macros to have more compact data representation—tough luck. For example, in Indeo3 codebooks have sequences like (a,b), (-a,-b), (b,a), (-b,-a) which would be nice to shorten with a macro. But the best solution I saw in Rust was to declare whole array in a macro using token tree manipulation for proper submacro expansion. And I fear it might be the similar story with implementing motion compensation functions where macros are used generate required functions for specific block sizes and operations (simple put or average). I’ve managed to work it around a bit in one case with lambdas but it might not work so well for more complex motion compensation functions;
  • Also the tuple assignments. I’d like to be able to assign multiple variables from a tuple but it’s not possible now. And maybe it would be nice to be able to declare several variables with one let;
  • There are many cases where compiler could do the stuff automatically. For example, I can’t take a pointer to const but if I declare another const as a pointer to the first one it works fine. In my opinion compiler should be able to generate an intermediate second constant (if needed) by itself. Same for function calling—why does - 42); fail borrow check while let pos = bitread.tell() - 42;; doesn’t?
  • Borrow checker and arrays. Oh, borrow checker and arrays.

This is probably the main showstopper for implementing complex video codecs in Rust effectively. Rust is anti-FORTRAN in a sense that FORTRAN was all about arrays and could operate arrays safely while Rust safely prevents you from operating arrays.

Video codecs usually operate on planes and there you’d like to operate with different chunks of the frame buffer (or plane) at the same time. Rust does not allow you to mutably borrow parts of the same array even when it should be completely safe like let mut a = &mut arr[0..pivot]; let mut b = &mut arr[pivot..];. Don’t tell me about ChunksMut, it does not allow you to work with them both simultaneously. And don’t tell me about Bytes crate—it should not be a separate crate, it should be a core language functionality. In result I have to resort to using indices inside frame buffer and Rc<RefCell<...>> for frames themselves. And only dream about being able to invoke mem::swap(&mut arr[idx1], &arr[idx2]);.

Update: so there’s slice::split_at_mut() which does some of the things I want, thanks Tomas for pointing it out.

And it gets even more annoying when I try to initialise an array of codebooks for further user. The codebook structure does not implement Clone because there’s no good reason for it to be cloned or copied around, but when I initialise an array of them I cannot simply declare it and fill the contents in a loop, I have to resort to unsafe { arr = mem::uninitialized(); for i in 0..arr.len() { ptr::write(&arr[i], Codebook::new(...); } }. I know that if there’s an error creating new element compiler won’t be able to ensure that it drops only already initialised elements but it’s still a problem for compiler not being smart enough yet. Certain somebody had an idea of using generator to initialise arrays but I’m not sure even that will be implemented any time soon.

And speaking about cloning, why does compiler refuse to generate Clone trait for a structure that has a pointer to function?

And that’s why C is still the best language for systems programming—it still lets you to do what you mean (the problem is that most programmers don’t really know what they mean) without many magical incantations. Sure, it’s very good to have many common errors eliminated by design but when you can’t do basic things in a simple way then what it is good for?

Annoying things that cannot be fixed

  • type keyword. Since it’s a keyword it can’t be used as a variable name and many objects have type, you know. And it’s not always reasonable to give a longer name or rewrite using enum. Similar story with ref but I hardly ever need it for a variable name and ref_<something> works even better. Still, it would be better if language designers picked typedef instead of type;
  • Not being able to combine if let with some other condition (those nested conditions tend to accumulate rather fast);
  • Sometimes I fear that compilation time belongs to this category too.

Overall, Rust is not that bad and I’ll keep developing NihAV using it but keep in mind it’s still far from being perfect (maybe about as far as C but in a different direction).

P.S. I also find the phrase “rewrite in Rust” quite stupid. Rust seems to be significantly different from other languages, especially C, so while “Real Programmers can write FORTRAN program in any language” it’s better to use new language features to redesign interfaces and make new overall design instead of translating the same mistakes from the old code. That’s why NihAV will lurch where somebody might have stepped before but not necessarily using the existing roads.

NihAV — Some News

Sunday, July 30th, 2017

So, despite work, heat, travels, and overall laziness, I’ve managed to complete more or less full-featured Indeo 4 and 5 decoder. That means that my own decoder decodes Indeo 4 and 5 files with all known frame types (including B-frames) and transforms (except DCT because there are no known samples using it) and even transparency!

Here are two random samples from Civilization II and Starship Titanic decoded and dumped as PGM (click for full size):

I’m not going to share the code for transparency plane decoding, it’s very simple (just RLE) and the binary specification is easy to read. The only gotchas are that it’s decoded as contiguous tile aligned to width of 32 (e.g. the first sample has width 332 pixels but the transparency tile is 352 pixels) and the dirty rectangles provided in the band header are just a hint for the end user, not a thing used in decoding.

This decoder was written mostly so that I can understand Indeo better and what can I say about it: Indeo 4/5 is about the same codec with some features fit for more advanced codecs of the later era. While the only things it reuses from the previous frames are pixels and band transform mode, it can reuse decoded quantisers and motion vectors from the first band for chroma bands and luma bands 1-3 in scalability mode too. It has variable block sizes (4×4, 8×8 and 8×8 in 16×16 macroblock) with various selectable transforms and scans (i.e. you can have 2D, row or column Slant, Haar or (theoretically) DCT and scans can be diagonal, horizontal or vertical too). And there were several frame types too: normal I-, P- and B-frames, droppable I- and P-frames, and droppable P-frame sequence (i.e. P-frames that reference the previous frame of such type or normal I/P-frame). Had it had proper stereo support, it’d be still as hot as ITU H.EVC.

The internal design between Indeo 4 and 5 differs in small details, like Indeo 4 having more frame types (like B-frames and droppable I-frames) — but Indeo 5 had introduced droppable P-frame sequence; picture and band headers differ between versions but (macro)block information and actual content decoding is the same (Indeo 5 does a bit trickier stuff with macroblock quantisers but that’s all). Also Indeo 4 had transparency information and different plane reconstruction (using Haar wavelet instead of 5/7 used in Indeo 5). So, in result my decoder was split into several modules reflecting the changes: and for codec-specific functions, for common structures and types (e.g. picture header, frame type and such), for transforms and motion compensation and for the actual decoding functions.

As with Intel H.263 decoder, Indeo 4/5 decoders provide implementations for IndeoXParser that parse picture header, band header and macroblock information and also recombine back plane in case it was coded as scalable. In result they store not so much information, just the codebooks used in decoding and for Indeo5 the common picture information that is stored only for I-frames (in other words, GOP info).

In result, here’s how Indeo 4 main decoding function looks like:

    fn decode(&mut self, pkt: &NAPacket) -> DecoderResult<NAFrameRef> {
        let src = pkt.get_buffer();
        let mut br = BitReader::new(src.as_slice(), src.len(), BitReaderMode::LE);

        let mut ip = Indeo4Parser::new();
        let bufinfo = self.dec.decode_frame(&mut ip, &mut br)?;
        let mut frm = NAFrame::new_from_pkt(pkt,, bufinfo);

with the actual interface for parser being

pub trait IndeoXParser {
    fn decode_picture_header(&mut self, br: &mut BitReader) -> DecoderResult<PictureHeader>;
    fn decode_band_header(&mut self, br: &mut BitReader, pic_hdr: &PictureHeader, plane: usize, band: usize) -> DecoderResult<BandHeader>;
    fn decode_mb_info(&mut self, br: &mut BitReader, pic_hdr: &PictureHeader, band_hdr: &BandHeader, tile: &mut IVITile, ref_tile: Option<Ref<IVITile>>, mv_scale: u8) -> DecoderResult<()>;
    fn recombine_plane(&mut self, src: &[i16], sstride: usize, dst: &mut [u8], dstride: usize, w: usize, h: usize);

And the nano-benchmarks:
the longest Indeo4 file I have around (00186002.avi) — nihav-tool 20sec, avconv 9sec plus lots of error messages;
Mask of Eternity opening (Indeo 5) — nihav-tool 8.1sec, avconv 4.1sec.
Return to Krondor intro (Indeo 5) — nihav-tool 5.8sec, avconv 2.9sec.
For other files it’s also consistently about two times slower but whatever, I was not trying to make it fast, I tried to make it work.

The next post should be either about the things that irritate me in Rust and make it not so good for codec implementing or about cooking.

A Bit about Airlines

Tuesday, July 25th, 2017

I did not want to have personal rants in my restarted blog but sometimes material just comes and presents itself.

As some of you might know, I prefer travelling by rail; yet sometimes I travel by plane because it’s faster. Most of those flights are semiannual flights to Sweden and an occasional flight to elenril-city. And here’s the list of unpleasant things I had with flights:

  • Planes being late for more than an hour (because of technical reasons) — two Lufthansa flights from Arlanda;
  • Plane being late just because — Aerosvit, once;
  • Baggage not loaded on plane — Cimber Sterling (aka Danish Aerosvit);
  • Flights cancelled because of strike — once SAS and once Lufthansa;
  • Flight being cancelled because of plane malfunction — Lufthansa once;
  • Flight being cancelled because they didn’t want to wait for the passengers — Lufthansa once (yup, people were waiting at the gate but they decided to skip boarding entirely and send the plane away without passengers);
  • Flight where I could not check in — Lufthansa once.

To repeat myself, most flights I make during the year are with SAS to/from Sweden though sometimes segment is operated by LH. So far return trips to Frankfurt with LH were mostly okay except for some delays but the last “flight” was something different.

I booked a flight FRA-PRG-FRA. The flight to Praha was cancelled because plane arrived to Frankfurt at least half an hour later than expected and after another hour it was decided it’s not good enough to fly again. Okay. So they could not find a replacement plane and rebooked me to flight at 22:15. Fine, but it turned out that I could reach Praha by train faster and cheaper (twice as cheap actually) so I decided not to wait.

Then the time for return flight came and I could not check in at all because they have modified something (that’s the message: “Cannot check in to your flight because of modifications, refer to Lufthansa counter.” And there’s no LH representative there. And if you can withstand their call centre, you’re a much better person than I am). So it was another train back to Germany (which also broke down in the middle of nowhere but at least it was resolved in an hour and a half). Maybe it’s because of the selected Cattle Lowcostish fare (Economy but without check-in baggage or seat selection) instead of the usual one but at least with SAS when I wasn’t able to take flight to Arlanda (because of Frankfurt Airport staff strike) I still had no problems flying back from there.

Call me picky (and I shan’t argue, I am picky) but I expect better statistics because the most irritating cases were happening with the certain company that I don’t fly with often and that’s comparable with SAS in quantity (but, sadly, not quality).

And that means I’ll avoid using it in the future even if that means not being able to get to some places by plane in reasonable time. There are still trains for me.

P.S. This rant is just to vent off my anger and frustration from the recent experience. And it should make me remember not to take Air Allemagne flights ever again.
P.P.S. Hopefully the next post will be more technical.