Archive for the ‘Various Video Codecs’ Category

Indeo 3 overview

Friday, January 27th, 2023

The overall idea behind this codec is simple: a frame is split into cells of variable size (the patent says “a roughly regular grid of cells”) using a binary tree, each cell can then either be coded in intra mode (differences to the previous line) or inter mode (differences to some region in the previous frame). Coding is done by splitting cell into 4×4, 4×8, 8×8 or 8×4 blocks and using one or two of 21 codebook to code pairs of differences (with some tricks to compress small differences and zero runs even further).

The patent describes thirteen different modes, the decoders I know about support only some of those:

  • mode 0—code 4×4 blocks using a single codebook;
  • mode 1—code 4×4 blocks using two different codebooks for even and odd lines;
  • mode 2—code 4×4 blocks using two different codebooks but the second one is used only for the second line (no known decoder supports that mode);
  • mode 3—code 4×8 block using a single codebook by coding differences to the even lines and interpolating the odd ones;
  • mode 4—the same as mode 3 but with two codebooks;
  • mode 5—very similar to mode 3 but with a possibility to add a correction to the interpolated lines (since it involves writing single bits that no other part of the codec does, no known implementation supports it);
  • mode 6—like mode 5 but with two codebooks (and equally unsupported by anything known);
  • mode 7—code 4×4 blocks with bit flags for telling which dyad to code (no known decoder supports this);
  • mode 8—the same as mode 7 but with two codebooks (of course it’s unsupported);
  • mode 9—the same as mode 7 but with the second codebook specially for the second line (equally unsupported);
  • mode 10—code 8×8 block using a single codebook by either duplicating pixels on even lines and interpolating odd lines (for intra) or scaling each delta for 2×2 block (in inter mode);
  • mode 11—code 4×8 (inter only) block using corrector repeated for each odd line;
  • mode 12—mode 11 with two codebooks (only VfW version supports it).

Considering the internal implementation details (e.g. using arrays for opcode handling or not), I’d say that QuickTime and XAnim versions of the decoder are based on the same porting kit code supplied by Intel while Video for Windows version uses the different codebase (it’s not just an encoder being present and mode 12 support, it’s also the way how many tables are generated in runtime while they are static in other decoders, not using the opcode tables and other minor things).

But before we start to code cells we need to perform the initial frame splitting and the next post should be about that.

Starting yet another useless encoder

Thursday, January 26th, 2023

Even before I started to write my series of posts on FFhistory, I had another work in progress already which I’m now making public in order not to chicken out (as I did several times already). I’m talking about Indeo 3 encoder.

Why Indeo 3 of all possible things? It’s both not your conventional DCT-based codec and it’s widespread enough to be of some limited use for me (being present in AVI, MOV and VMD containers, only Cinepak is more ubiquitous). I’m not as good as Mike Melanson but I’m willing to try my hoof at it.

The funny thing is, there’s an opensource decoder for it and even a decent description in US patent 5,386,232 from 1995 (so it’s expired already and anybody can write an encoder for it). The problem is that those two sources don’t match between each other and somewhat disagree with the official binary specification (I’m pretty sure that both Indeo3 decoders were REd from XAnim module). And Ghidra does not like VfW binary (maybe it’ll like the version inside QT6 better) so I can’t easily refer to it either.

Anyway, I attempted and gave up writing an encoder for Indeo 3 several times because of its perceived combinatoric complexity. First you need to split frame recursively into blocks—how to select them? Then you need to select one of the coding modes (again, how?) and codebooks (same question). Trying to think of a reasonable way to implement it all made me shudder and give up until I finally read the format description and persisted enough to write at least something working (side note: I also have the same problem with TrueMotion 1 encoder which I also want to write one day, hopefully it’ll be easier now).

Also I tried to look into the encoder implementation and found it as a bunch of magic numbers at work. I’m not joking, during initialisation it seems to set several dozens of various integers and floats and use them for various coding decisions (at least what I could understand from it is that codebook selection is kinda tied to the internal quantiser parameter which is calculated depending on bitrate/quality—and various magic numbers).

So I want to document how this codec works, what differs in the different descriptions of it and how my encoder decides what to use in different situations. This should amount to another dozen of posts that nobody will read.

Looking again at LSVX

Tuesday, November 29th, 2022

Recently Paul B. Mahol asked me to take a look at LSVX codec (aka Lightning Strike Video Codec from Espre). Since the guy is working on Bink2 decoder for all of us, he deserves some respect. So here’s what I found.

Previously I took a glance on it, found that it’s based on tmndec 3.0, kinda the reference decoder for H.263 and concluded it is an ordinary H.263 rip-off and hadn’t looked further. It turned out to be more interesting though.

LSVX frames start with 5-byte header where the second byte tells the frame type (0x01, 0x08 and 0x09 are for normal frames, 0x05 is from skip frames; additionally if the first two bytes of the header are 0x78 0x01 then the header is followed by another eight bytes, usually with “lsvxv2.0” in them). Then almost normal H.263 stream follows—at least on a prolonged glance it seems to be the standard H.263 stream without any modifications of the headers (except maybe in motion vectors decoding). But there’s a catch! Key frames may have picture type 7 (reserved code in the standard) and then they’re coded with wavelets.

The wavelet coding is rather straightforward: you have a picture split into many bands, each of them is quantised and coded with a semi-adaptive binary coder. By that I mean that it uses models with fixed probabilities but it selects different context for different bits depending on previously decoded bits and in some cases the entier sets of probabilities may be switched mid-decoding. Beside that there are no special tricks like zero tree coding or fancy coefficient prediction.

Maybe I’ll write a decoder for it after all.

Looking at KQ6 Mac videos

Friday, November 25th, 2022

The terrorist country proves that it is recognized as one and keeps targeting civilians instead of fighting a war. So nothing new but it would still be nice to see its demise soon. Meanwhile I keep doing small things to distract myself from all this.

Since I have nothing better to do, I watch reviews of various games including the ones I know well. And one of those reviews mentioned that Macintosh version of King’s Quest VI: Heir Today Gone Tomorrow had peculiar intro. Actually every version of the game has something peculiar about its intro: DOS version uses Sierra’s own RLE-based SEQ format, Windows version uses standard MS Video 1 in AVI (it was my first sample with palette change messages), Amiga version is a reimplementation by Revolution Software on their Virtual Theatre engine altogether (maybe ScummVM will support it one day for all three and a half fans waiting for that). So, what’s with Macintosh version?

First of all, the files are QuickTime movies in the original Macintosh format where frame data is stored in the data fork and movie header is stored inside the resource fork. Since not all modern OSes support such files natively (or conveniently), I’ve hacked a support for such movies in MacBinary format that keeps all forks in one file. And what do we have inside?

Inside the files are video streams packed with Cinepak. One of the peculiarities is that they have palette specified in video header in the format different from the conventional MOV color atom format, let alone the fact it should not be present at all. I understand that for Cinepak and even more for Indeo 3 (I really should write an encoder for it one day) it was common to provide a palette so they rendered their output for 256-colour mode but in that mode Cinepak simply coded palette indices and here we have YUV420 output and a palette as a recommendation.

Then there’s a fun case with tracks in KQ6Movie. I understand that they split video and coded it in several tracks so they could use different palettes (and framerates as it turns out) for different segments. And those tracks are not in order. Tracks 0 and 1 seem to be the very beginning, track 2 corresponds to a scene somewhere in the middle and track 3 is the last intro scene. Other ten tracks are not in order either. Maybe there is some information hidden in the header telling the order but I’m too lazy to find it out (let alone implement).

All in all, this was unexpectedly weird.

A quick look at PDQ2

Friday, October 21st, 2022

So there’s this new service discmaster.textfiles.com for searching for files from some old disks and discs at archive.org and out of curiosity I took a look at what it offers.

While it’s physically impossible to check all hundreds of millions of files it indexes (even just videos), I took a look at one rather curious category called aviAudio. There are about six hundred files of such type found so I decided to check them to see what kind of beast that is.

Some files turned out to exactly AVI audio files—AVI files with single stream that turns out to be audio (I don’t know why but this happens). The rest of the files were AVIs with unrecognized video track (just what I was hoping for!). One set of the samples come from some game with IPMA codec, other sources mostly feature Motion Pixels video (which is horrible both to RE and to support so I’d rather not touch it), one sample was special “codec” for some russian erotic game (which means complete garbage even by russian game standards) that is really just obfuscated Indeo 5. And finally there was a single PDQ2 sample (from some Incredible Hulk game demo from 1997).

An interesting thing is that it’s a DOS game with built-in AVI demuxing and decoding of this codec. The codec turned out to be a lot like various lossless codecs (so its FOURCC probably stands for something like “pretty damn quick codec, version 2”). It splits video into 4×4 tiles and emits up to three streams stored one after another: tile opcode (copy previous tile, copy previous data with an arbitrary offset, skip tile, raw tile), variable offsets and tile pixels. Additionally frame data may be packed further with LZ77-based scheme. As I said, a rather familiar scheme for lossless video codecs and it makes me wonder whether it’s a codec developed specifically for the game(s) or it was borrowed from somewhere else.

Looking at true IVF

Thursday, October 13th, 2022

So while russia demonstrates once again what a hysterical führer and his similarly minded generals would do, I’m trying to do something to distract myself from the thoughts about the losses Ukraine suffered in last couple of days (and previous couple hundreds of days too).

Accidentally I’ve managed to find a sample in IVF format—the original streaming format for Indeo codecs. Despite the expectations it was not a renamed AVI file which made it even more interesting. So I took Ghidra and binary specification and started implementing it.

The format by itself is rather simple and the only interesting thing is that it transmits video data in passes: first it’s just bare minimum keyframes and all other frames as drop frames, then some inter frames are sent, then more data is sent and more. Unfortunately there’s no obvious field to tell where each part starts so I simply assemble frames in memory (which is not effective but still better than the original creating temporary files for assembling fragments).

Then there was a problem with decoding them: my existing decoder expected a frame with sequential structure while in this case fragments are transmitted out of order. Normally you’d get all four bands for luma plane and then a band for each chroma planes but in this case it may be one or two bands for luma plane, then chroma plane bands, then some zero padding and then the rest of the bands for luma (if they were transmitted at all). In the reference implementation the demuxer seems to parse and re-assemble the frame while I ended up writing a slightly different decoder for this scalable mode. It seems to work fine so now NihAV support for Indeo family of formats is even more complete than ever.

P.S. The Wiki had only the entry for Duck test samples format (that has the same extension) so somebody had to correct that. Which also makes me think about things like Duck AVC, AVS being an FMV game format or Chinese non-Duck AVC rip-off, IEEE AAC and so on. This confusion deserves to be written about but don’t expect me to do that.

German PEGs

Thursday, September 29th, 2022

Having said everything I could on the current political situation, I returned to looking at random codecs and I found one with a curious name.

The name is DPEG and it’s used in at least one random game I’ve never heard of. It turned out to be a rather simple tile-based codec with raw intra frames and inter frames that employ RLE and motion compensation.

So nothing interesting but then it struck me: wait a bit, I remember REing a codec with almost the same name, block-based RLE coding approach and also from a German company (a different one though).

And there’s this Fraunhofer society involved in MPEG Video and MPEG Audio (different branches though)…

So what’s the German fascination with naming codecs [A-Z]PEG and how many out of 22 possible codecs are really implemented?

A Quick Look at AVS3

Monday, August 15th, 2022

The war has shifted to a terrorist operation against Ukrainian civilians (with no change for my home city, it gets several strikes from russian territory every day regardless) and instead of threatening the world with nuclear war russia threatens the world with nuclear terrorism using the captured Ukrainian nuclear power plant. So here’s yet another attempt to distract myself from thoughts about it.

It seems that AVS3 has been standardised already (and nobody cares). So out of idle curiosity I’ve downloaded the spec from avs.org.cn (in Chinese of course, and it requires you to fill some information but accepted any garbage). So let’s look at this completely original format that has not borrowed anything neither from H.266 nor from AV1.
(more…)

A cursory glance at Daniel codecs

Sunday, July 10th, 2022

Recently Paul B. Mahol turned my attention to the fact there are codecs with human names so why not take a look at them?

The first disappointing thing is that you need to register in order to receive a link for downloading that software. Oh well, throwaway mail services exist and it’s not the first codec I’ve seen doing that (though I’ve forgotten its name already like I’ll forget about this codec). Then it’s the binary size. I remember thinking that Go2Somewhere single 15MB .dll is too much but here’s is even larger (because they’ve decided to bundle a bunch of other decoders and demuxers instead of just one codec).

In either case, what can I say about the codec? Nothing much really. They both seem to be DCT-based intermediate codecs that group blocks into slices. Daniel2 uses larger tiles in slices, probably to accommodate for the wider variety of supported chroma formats (unlike its predecessor it supports different colourspaces, chroma subsamplings and bitdepths). The claimed high (de)coding speed comes from the same approach as in VBLE (does anybody remember it? I still remember how Derek introduced its author to me at one of VDDs). Yes, they simply store coefficients in fixed amount of bits and transmit bit length for each tile to use.

The only really curious thing I’ve found is some combinatorial coding approach I’ve never seen anywhere else. Essentially it stores something like sum in a table and for each value only the number of table entries is transmitted. Actual value is decoded as (max(table[0], ..., table[len - 1]) + min(table[0], ..., table[len - 1]) + 1) / 2 and then the decoded value is subtracted from all table elements used in the calculation. I have no idea why it’s there and what it’s good for but it exists.

Overall, it was not a complete waste of time.

Looking at Aware MotionWavelets

Sunday, December 26th, 2021

I wanted to reverse-engineer and implement some wavelet codec just for the sake of it. And finally I’ve managed to do that.

Initially I wanted to finish Rududu Video codec (I’ve looked at it briefly and one of the funny things is that the opensource release of Rududu Image codec does not match the actual binary specification, even arithmetic coder is different), but it turns out there’re no samples in the usual place so I just picked something that has some samples already.

The codec turned out to employ some tricks so I had to resort to collecting debug information in order to understand band structure (all band dimensions are implicit, you need to know them and the order to decode it all successfully). Then it turned out that band data is coded in boustrophedon order instead of the usual raster scan. And finally there’s fun with scaling: vertical transform is the same as horizontal one but the output is scaled by 128. Beside that it’s rather unremarkable.

Anyway, I got slightly deeper knowledge about the inner workings of wavelet codecs and it should not bother me any longer. It’s time to slack off before doing something else.