Looks like it’s been about two months since I last wrote anything about NihAV
but that does not mean I did not have anything to write about. On the contrary, I’m glad to report about significant progress in RealAudio support.
Previously I’ve reported about RealVideo 3 and 4 support (as for RealVideo 1/2 and ClearVideo before), so video part was covered quite well but audio part was missing and I went on to rectify the situation.
Now NihAV
supports RealAudio 1.0 (speech codec), RealAudio 2.0 (speech codec), RealAudio DNET (a bit about it later), RealAudio 4.0 (speech codec from Sipro), RealAudio Cook (this one deserves a separate post so the next one should be about this codec) and RealAudio Lossless. So there are only three codecs missing now: RealAudio 8 (ATRAC3), RealAudio 9/10 (AAC) and RealVideo 6(HD). Of course I’m going to add support for those as well.
This is actually a good time to implement those. As you might know, there is a Holy Trinity of Licensors: D.vX, D*lby and DT$. They are famous for ‘nice’ licensing terms. While I’ve never had to deal with them, I’ve heard from people who did that they like licensing single product they’re most famous for at outrageous prices (i.e. it’ll cost you a magnitude more per unit using their technology than e.g. H.264 decoder) and it’s a viral license too because if you sell stuff not oriented for consumers then you have to force your customers into the same deal (it’s GPL—Greedy Private License) and you have to report your sales to them for obvious reasons. Funny how two of the companies were bought out already. Now let’s look at them in some details:
- D.vX This one is remarkable since it licensed the product it had nothing to do with (aka M$MPEG-4 adapted for non-ASF containers and MPEG-4 ASP). At least it seems hardly relevant now unless I dig out some old movies.
- D*lby This one is mostly known (outside cinema equipment) for codec with several names: ATSC A/52, RealAudio DNET, ETSI TS 102 366, D*lby Digital and even something you can make out of letters
A
C
and 3
(I heard rumours that it does not like its trademarks mentioned so I’d better avoid directly naming it). At least the last patents for that format has expired and support for it can be implemented freely. And it also owns a company that manages licensing of AAC. Fun fact is that patents for MPEG2 NBC are expired so I can implement AAC-LC decoder just fine but that does not stop them for licensing it. How they do it? By refusing to license the separate parts and forcing a whole package of AAC-LC, HE-AACv1, HE-AACv2 and xHE-AAC onto you. I guess if the situation won’t change in twenty years all current stuff will expire but they’ll still license it along with Ultra-Enhanced-Hyper-Expanded-Radically-Extended High-Efficiency AAC (which will have nothing to do with all those previous formats).
- DT$ A company similar to D*lby and its (former?) prime competition. Also known for single format with many extensions making it essentially a homebrew AAC. At least it seems to be exclusively DVD/Blu-ray format and I’m satisfied with Xine for playing the former and avoiding the latter completely.
And I want to talk a bit more about my RealAudio DNET decoder. Internally it’s called ts102366
for obvious reasons and I have just a primitive implementation for it (i.e. it seems to work and should handle multichannel fine but no extended features). The extension for more than 5.1 channels also seems to be HD-DVD/Blu-ray only so I don’t care, it’s quite rare in RealMedia format and other containers seem to contain it as contiguous stream so I’d need to introduce support for NAElementaryStream in demuxing code and also proper parser to split it into frames. Not worth the effort for me at this moment. Another fun fact is that bitstream comes in 16-bit words that can have any endianness. In my case I just had to detect the proper endianness from first two bytes and simply initialise bitstream reader in BE
or LE16
mode depending on it (again, it’s funnier with DT$ format where you have three different bitstream reading modes and you might need two modes simultaneously in some cases; again, good thing I don’t have to care about that stuff). Also it’s still one of two codecs I currently have that support multichannel audio (Cook is the second of course and AAC will be third).
And finally some words about Rust issues I had to deal with.
Rust as a language is more or less fine but compiler sucks. I’ve ran into several issues while writing code.
First, I had a fixed array of Codebooks to initialise in RALF decoder (one of 15 codebooks, another one of 125 codebooks and yet another one of 10×11 codebooks). If I use simply mem::uninitialized()
with filling it up it works fine. In debug mode. In release mode it segfaults at the end. Probably I should’ve used ptr::write()
instead of assigning and it would work fine but I gave up and used a vector instead of an array even if it’s not as efficient. Obviously it’s all my fault and not Rust issue but still that was weird.
Second, when I tried to create a generic codebook reader that would accept table of codes of any primitive type (u8
, u16
or u32
) I ran into funnier issue of Rust compiler spewing weird errors like “cannot convert u16 to u32 because it’s not a primitive type”. Obviously it’s my mistake and it’s caught by a tool (that is still not in stable) so the developers don’t care (yes, Luca even bothered to file an issue on that). Still, I’d rather have a clearer error message in that case (e.g. “… because it’s X and not a primitive type”).
And finally, an example that is definitely rustc
stupidity and not mine. Again, developers don’t consider this to be an issue but I do (and Luca seemed to agree with me since he opened an issue about it). Essentially, there is a thing called DCE (dead code elimination), so when compilers see that certain block won’t be executed they might print a warning and just check inside code for syntactic validity. Current rustc
might ignore condition value and optimise code inside even if it clearly makes no sense (to the point where it crashed because of that on some nightly version, see the issue for details). And while you argue that one should not write such code, I had quite plausible use case for it: a macro that took 2- or 3-element array and did something to its values so if third value was present it had to do something special with it. But of course compilation failed because you tried to do if ARR.len() > 2 { a = ARR[2]; }
with two-element array. But when I tried to check whether I got indexing correct by using large constants as indices, cargo check
passed just fine—probably because const propagation did not go that deep inside my code (it was in a function called from a long chain in some sub-sub-sub-module and standalone example errors out fine). This feels quite unpolished to me.
Oh, and final final fun thing: the calls like foo.bar(foo.baz)
would still fail borrow check probably because they can’t (I guess) formalise function calling convention i.e. “if function is called then first its arguments are evaluated and copied if needed in certain order, then function address is evaluated and called with the arguments”. BTW you still have the situation like this:
struct Foo { foo: u8 }
impl Foo {
fn bar(&mut self) -> u8 { self.foo += 1; self.foo }
}
fn fee(a: u8, b: u8) {
println!("{} {}", a, b);
}
fn main() {
let mut foo = Foo { foo: 42 };
fee(foo.bar(), foo.bar());
}
And if you don’t know what’s wrong here I’ll tell you: in C argument evaluation is implementation-defined because back in the day there were very different calling conventions and thus compiler needed to start with evaluating from last argument to first to store them in order instead of widespread pushing arguments in order to stack. So depending on ABI the function would be called either as fee(43, 44)
or as fee(44, 43)
.
Now I see two ways out of it: either detect such situation where the same object is mutably called several times and give an error or, which is better IMO, make formal calling convention so the code won’t be undefined. And fix borrow checker while doing that.
Overall, Rust is a nice experience so far since it allows code to structure much better but sometimes you hit such silly issues that spoil all the fun.
Anyway, next post should be about RealAudio Cook, the Opus of its era.