While it’s summer and I’d rather travel around (or suffer from heat when I can’t), there has been some progress on NihAV
. Now I can decode VP5 and VP6 files. Reconstruction still sucks because it takes a lot of effort to make perfect reconstruction and I’m too lazy to do that when simple demonstration that the decoder works would suffice.
Anyway, now I can decode both VP5 and VP6 files including interlaced ones. Interlacing in VP5/6 is done in very simple way like many other codecs: there’s a bit for each macroblock telling whether macroblock should be output in interlaced form or not.
Of course this being VPx family, they had to do it with some creativity. First you decode base interlaced bit probability, which is stored as 8-bit value while all other bit probabilities are stored in 7 bits. Then you derive actual probability for interlaced bit and decode it before any other macroblock information (including macroblock type—it’s that important). Probability is derived by companding base probability depending on whether last macroblock was interlaced (then probability is halved) or not (then it’s remapped to fit 128-255 range)—except for the first macroblock in a row which would use the base probability without modifications. And for VP6 you also have to use different starting scan order (band assignment for each coefficient, now it’s shuffled). This is so trivial that one would wonder why this has not been done in libavcodec
decoder yet.
There are three possible things to do next: polish current implementation, move to AVC (On2 AVC that is) or move to AVC (Duck VP7 which is AVC ripoff). But probably I’ll simply keep doing nothing instead.